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ABSTRACT
For hard real-time systems, timeliness of operations has to
be guaranteed. Static timing analysis is therefore employed
to compute upper bounds on the execution times of a pro-
gram. Analysis results at high precision are required to
avoid over-provisioning of resources. For current processors,
timing analysis is a complex task mainly due to interdepen-
dencies of the processors’ features that affect the overall
timing behaviour. To still obtain tight bounds, state-of-
the-art approaches collect detailed information about these
interdependencies by exploring the state space of the system
as a whole.

Modern systems, such as multi-core processors, introduce
even more timing dependencies – e.g. due to interference on
shared resources between functionally independent programs
running on different cores. This will eventually render the
above, non-compositional, approach infeasible in terms of
analysis runtime and memory consumption. Therefore, recent
analysis approaches often assume a certain independence of
system components – referred to as timing compositionality.

We aim at a formal definition of timing compositionality as
it was previously only introduced informally. How to achieve
timing compositionality in general is an unsolved question.
We highlight challenges and summarise open problems that
arise in the context of compositional analyses.

1. INTRODUCTION
In general-purpose computing, the fast execution of pro-

grams in most cases is a desirable property. In safety-critical,
hard real-time (embedded) systems, program execution on
time in all cases is strictly required [1]. Therefore, static
analysis methods are employed to derive guarantees on the
timing behaviour of a program – prior to the deployment of
the system.

Analysis results at high precision are required to prove the
system’s timeliness without over-provisioning its resources.
The timing of a program depends not only on its inputs such
as sensor values, but also on the state of its underlying hard-
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ware platform. A memory access during program execution,
e.g., can be served in a few cycles if the requested memory
block is cached, while taking hundreds of cycles otherwise.
In order to obtain precise results, this microarchitectural
influence on the execution time has to be considered during
analysis.

Modern microprocessors have several performance-enhan-
cing features such as complex pipelining, caching, branch
prediction, and speculation. Each of these features enlarges
the microarchitectural state that has to be considered during
analysis to obtain tight timing bounds. Additionally most of
these processors’ features are also highly interdependent [2] –
often enough in a subtle way. These interdependencies cause
interferences between processor features during program
execution – e.g. a speculative memory access influences the
cache content and thereby its timing behaviour. Timing
analysis for such microprocessors has become a complex task
due to these interferences.

To obtain tight timing bounds, state-of-the-art approaches
employ a highly-integrated, non-compositional analysis that
simultaneously keeps track of all the interferences caused by
interdependencies. They explore the space of whole system
states that can evolve during program execution and search
for the longest path. Such approaches allow to precisely
capture the detailed execution behaviour of a program – at
the cost of significant analysis effort. To allow for a more
compact representation of system states, abstractions are
employed. Efficient and sufficiently precise abstractions have
been found for some isolated features, e.g. caches [3], while
abstractions for other components and their complex inter-
play are still to be found. The integrated approach using
abstractions, as implemented in the industry-strength tool
aiT1 by AbsInt GmbH, is successfully applied for programs
that execute uninterruptedly and in isolation – even on com-
plex processors [4]. Despite the employed abstractions, the
state space exploration is still very expensive in terms of
analysis time and memory consumption. Thus, any change
to the analysis setting or any additional processor feature
might render this approach computationally infeasible.

The need for compositionality by two examples. In mod-
ern and future embedded systems, tasks are scheduled pre-
emptively as this increases the overall schedulability com-
pared to non-preemptive scheduling. This introduces addi-
tional interferences, as the preempting task might evict useful
cache content that has to be reloaded by the preempted task.
Multi-core platforms are emerging also in the embedded do-

1http://www.absint.com/ait/



main as they offer a better performance-energy ratio and
reduce the total weight compared to multiple single-core
computers. As a consequence, several programs are grouped
together to execute concurrently on different cores sharing
common resources such as buses and memory. Thus, due
to resource sharing, interferences with an impact on the
timing behaviour between originally independent programs
are introduced [5]. Keeping track of this increasing amount
of interferences in an integrated analysis will lead to state
space explosion and will finally render the above approach
infeasible.

For that reason, complexity, there is a need for a composi-
tional view on (analyses of) the timing behaviour of a system
– moving away from the integrated, non-compositional view.
Recently, efficient and precise analyses have been proposed
that focus on the (timing) behaviour of selected features –
not of the whole system at once. Examples are the analysis
of shared buses in a multi-core system [6] [7] as well as anal-
yses for preemptively scheduled systems [8]. The inherent,
underlying assumption is that the system allows for such a
decoupling of analyses. This assumption is referred to as
timing compositionality.

Up to now, timing compositionality is a term whose mean-
ing is solely based on intuition without a rigorous, formal
definition. A first attempt towards a definition has been
made in [9] and is discussed in Section 3.4.

1.1 Our Contributions
Our contributions are threefold. First, we examine exist-

ing approaches that assume “timing compositionality” with
respect to their, often intuitive, understanding of composi-
tionality. Second, based on our findings, we present a new,
unified, and thorough formal definition of timing composi-
tionality. Thereby, we want to soundly replace the analysis
of a whole system by a combination of individual analyses
that focus only on selected features. We discuss timing com-
positional architectures as introduced by [9] and highlight
the differences to our definition of compositionality.

How to achieve timing compositionality in general is an
unsolved question. Is it possible to construct compositional
analyses even for complex processors, as well as to design
hardware (features) that allow for precise and compositional
analyses by construction? We identify challenges and pose
open problems that are subject to future work.

1.2 Overview
We start with a discussion of compositionality assump-

tions in the literature in Section 2 and identify the main
ingredients for our formal definition. Our definition is then
given in Section 3 and discussed in detail. In particular,
we distinguish our definition from the previous definition of
timing compositional architectures [9]. Further related work
is described in Section 5. In Section 4, we present a summary
of challenges and open problems. We conclude in Section 6.

2. TIMING COMPOSITIONALITY BY
EXAMPLES

Recently, approaches have been proposed that make use
of a compositional rather than an integrated view on the
timing behaviour of systems. This enables focusing on the
analysis of selected features of a system in isolation while
maintaining overall soundness – given timing composition-
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Figure 1: Multi-core system with shared bus and
memory. Compositional view of the worst-case re-
sponse time of a task running on Core 1.

ality and sound analysis results for the rest of the system.
We give several examples where timing compositionality is
assumed or required.

2.1 Resource-Sharing Systems
Schranzhofer et al. [6] [7] are concerned with the analysis

of the interference on a shared bus in a resource-sharing
system. As an example, consider a multi-core system with a
shared memory that is accessed via a shared bus as depicted
in Figure 1. A task executes on one core and can access the
shared memory through the shared bus. Each resource/bus
access might be blocked until access is granted by the arbiter
(e.g. TDMA arbitration [6] or adaptive arbitration [7]).

Timing compositionality enables the decoupled analysis of
the timing contributions of selected features and allows to
combine the individual results to a globally safe result. First,
an upper bound on the execution times of the task under
consideration execmax (excluding resource accesses) as well as
an upper bound on the number of resource accesses µmax are
computed. With these bounds in mind, the authors search
for the worst distribution of accesses and execution time to
maximize the blocking time B – e.g. given the static TDMA
schedule and the initial offset (starting time). For other
arbitration policies such as Round-Robin, the computation
of B might also depend on execmax and µmax of the tasks
running on the other cores. In the given scenario, a globally
safe bound is computed by

execmax + µmax · C +B,

where the constant C bounds the access time to the resource
once access is granted.

The authors explicitly assume a fully timing compositional
architecture in the sense of [9], i.e. an architecture without
timing anomalies. In general, the absence of timing anomalies
allows to prune parts of the abstract state space that an
analysis has to consider and thus affects the efficiency of
analyses. The presence of timing anomalies, however, does
not generally preclude timing compositionality in the sense of
decoupled analyses, e.g. as they are described in the previous
paragraph. For an in-depth discussion, see Section 3.4. In
contrast to timing compositionality, the absence of any timing
anomaly is not strictly required by the above approach and
only constrains the usable hardware platforms. Most known
analyses for modern microprocessors (except for very simple
ones) exhibit timing anomalous behaviour. Therefore, having
a “fully timing compositional architecture” is a quite strong
and possibly overly restrictive assumption.
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Figure 2: Compositional view on preemptively
scheduled systems: Task 2 is preempted by task 1.
Task 1 evicted useful cache content resulting in ad-
ditional cache re-loads. aTi arrival time of task i,
dTi deadline of task i.

2.2 Preemptively Scheduled Systems
Altmeyer et al. [8] present a response time analysis for

systems with fixed priority, preemptive scheduling in the
presence of caches. An example schedule of two tasks is
depicted in Figure 2. The worst-case response time of Task
2 is prolonged by Task 1 preempting it.

The response time of a task i is decoupled into (a bound
of) its execution time(s) Ei without preemption, (a bound
of) the execution time(s) Ej of tasks j possibly preempting
it, and the preemption cost γi,j , i.e. the additional execution
time of task i due to preemption by task j (and tasks with
higher priority than j). In [8] and [10], Altmeyer et al. focus
on the computation of the preemption cost that results from
evicting useful cache blocks by preempting tasks. (Other
effects, not related to the cache, are considered constant and
are assumed to be incorporated in the execution time bound.)
Their analyses approximate the number of additional cache
misses a due to preemption in the worst-case and thus yield
γi,j = a · BRT. The block reload time (BRT) – the penalty
that one additional cache miss might contribute to the overall
execution time – is assumed to be bounded by a constant.
This does not always have to be the case: one cache miss
could trigger a chain reaction in other parts of the system,
whose timing effect is only bounded by the size of the program
(so-called domino effects). Note, that chain reactions within
the cache are already captured by a.

The calculation of the timing contributions Ei, Ej , and γi,j
entails possible over-approximations. As an example consider
the block reload time (BRT) that soundly approximates the
timing contribution of one additional cache miss incurred
at any point during execution. Depending on the execution
context, e.g. the number of outstanding bus accesses to main
memory, the time needed for one reload varies. Necessarily,
a sound BRT might overestimate the actual reload time in
some cases.

In case of multiple preemptions, the overall preemption cost
depends on the number of preemptions which again depends
on the response time. Therefore, the authors employ a fixed
point iteration scheme to compute a valid response time [8].
During an iteration step, the results of the previous iteration
step are used to calculate nj the number of preemptions by
task j.

Timing compositionality is required to allow for a decou-

pling of the computation of the preemption costs and the
execution time of the tasks without preemption. The combi-
nation of the individual analysis results

Ei +
∑

j preempts i

nj · (Ej + γi,j)

leads to a globally sound result – in case of timing composi-
tionality.

2.3 Dynamic Random Access Memory
The use of DRAM (compared to static SRAM) complicates

timing analysis as the behaviour of the DRAM controller has
to be additionally modeled. One complication arises from
DRAM refreshes that prolong ongoing memory accesses and
appear (in general) asynchronously of program execution. A
possibility to account for these DRAM refreshes in timing
analysis is described by Atanassov et al. [11]. Let t be a
bound on the worst-case execution time (WCET) assuming
no DRAM refreshes, n the maximum number of refreshes
occurring during program execution and p the maximal delay
caused by a refresh. They claim that the WCET with enabled
refreshes is bounded by t+n ·p. Thus, they implicitly assume
timing compositionality because the penalty due to DRAM
refreshes and the WCET are independently computed and
then summed up to obtain a valid bound.

2.4 The Essence
The examples presented above highlight the intuitive un-

derstanding of timing compositionality and thus form the
basis for our formal definition in the next section. Therefore,
we summarise the key insights gained in this section.

First, we have a system, e.g. a program executed on a
multi-core processor, whose timing is of interest to us, i.e.
the execution time of the program running on the multi-core.
Next, the timing of the system is decomposed into several
timing contributions that capture a part of the system’s tim-
ing behaviour – e.g. the execution time without bus accesses,
the resource access time and the bus blocking time. The
individual timing results are then combined to a sound upper
bound on the system’s timing.

Each timing contribution is associated with a component
of the system – e.g. a processor core, a shared resource
such as a bus (Section 2.1). The term component (and
system) might refer to a hardware component, but also to a
software component such as an individual task (Section 2.2).
It is general and can thus capture timing decompositions at
different levels, such as the actual hardware level as well as
the software level.

3. TIMING COMPOSITIONALITY
In the previous section, we introduced the intuition behind

timing compositionality in depth. In this section, we want
to first present our formal definition and then discuss it in
detail.

3.1 Formal Definition – The Basics
First of all, we need a notion of time. The set of possible

timings is denoted by T . There are several possible choices
for T : Using T := N0, we can model discrete processor
cycles, while T := R+ could be used to model timings at a
finer level (e.g. in case of multiple clock domains).



System and Components. As already stated in the previ-
ous sections, we consider a system together with a set of
components where the system’s timing will later be decom-
posed into timing contributions of components. Note, the
generality of the term system and component. Depending on
the intended application, it might correspond to hardware
units in a processor (e.g. caches, pipelines or buses) or to
tasks on the software level. A component can again be seen
as a system whose timing could be further decomposed –
vice versa, a system can be seen as a component of a larger
system. We denote the component under consideration, the
system, by C, and its i-th component by Ci .

The behaviour of a system/component is dependent on
its current state. E.g. the execution of a program depends
on the program itself, the current program counter, the
values of its input variables, the microarchitectural state and
the state of the environment (such as co-running programs
on a multicore). The current state thereby determines the
subsequent behaviour of a system/component. Associated
to system C, S denotes the set comprising the states C can
be in (analogously Si for component Ci).

The states of individual components are not necessarily
independent, they can overlap, i.e. the can share common
information. As an example consider a concrete processor
system with a cache and a pipeline component: both timing
contributions depend on the instructions to execute. Nec-
essarily, they share common information about the current
state of the program, and so their states overlap.

Timing Behaviour. Next, we need a notion of timing be-
haviour of a system/component. The timing behaviour of
a system/component is state-dependent, e.g. the execution
time of a program varies depending on whether a memory
access hits or misses the cache. The timing behaviour of a
system C captures the time needed to reach a final state
starting in a given state s. Final means e.g. the termination
of the program implicitly given by s, or the point in time
where all tasks were successfully scheduled and executed. For
a component i, we are interested in the timing contribution of
component i to the overall system’s timing. As an example,
consider the timing contribution of the shared bus in terms
of additional blocking time (Section 2.1) or the contribution
of additional cache reloads due to preemption (Section 2.2).

To capture these timing contributions, we employ state-
dependent functions as described below.

Definition 1. Let C be a component (or a system) with
associated state space S. Furthermore let T denote the set
of possible timings. We call a function tc : S → T timing
contribution of C.

The definition is quite general and the precise meaning
of a timing contribution function depends on its intended
application. How to derive these state-dependent timing con-
tribution functions systematically is challenging (Section 4).
For one system/component, there exist different functions
that conservatively capture, i.e. over-approximate, the re-
spective timing contribution.

The timing contribution of a system reflects the system’s
overall timing.

Decomposition of Timing Behaviours. Before defining
timing compositionality, we need a notion of decomposition
of a system’s timing (contribution) into the timing contri-

butions of its components. As the timing contributions are
state-dependent, the decomposition also relates states of
the system with the corresponding states of each component.
Furthermore, the decomposition provides a combination func-
tion that combines the timings of the individual components.
As examples for a decomposition, refer to Section 2.1 and
Section 2.2.

Definition 2. Let C be a system and (Ci)i=1..n its com-
ponents with associated state spaces S and (Si)i=1..n. Fur-
thermore, let tc : S → T and (tci : Si → T )i=1..n be the tim-
ing contributions of the system and its components, respec-
tively. We call (tci)i=1..n together with a family of functions
(ai : S → Si)i=1..n and a combination function

⊕
: Tn → T ,

a decomposition of tc.

Each function ai : S → Si maps a system state to a corre-
sponding component state. It can be seen as an abstraction
function as it only keeps the state relevant for component
Ci , based on the state of the system. In some cases, the
abstraction might simplify to a projection (if the system
state is a tuple of component states), but it can be more
complex. We write si instead of ai(s) for short to denote the
state relevant for component Ci .

The combination function captures the type of composition.
In the examples presented in Section 2, the combination
is given by the addition operator – the individual timing
contributions are added up to obtain an overall timing bound.
The combination function might e.g. compute the maximum
of the components’ individual timings in case the components
execute in parallel and independently from each other. In
general, the combination function can be more complex and
is solely determined by the chosen decomposition.

For one given system, there might exist multiple decom-
positions of the system’s timing into different components’
timing contribution functions – associated with different ab-
straction functions and a different combination operator,
respectively.

3.2 Definition
Now, we give the definition of timing compositionality.

Definition 3. Let C be a system and (Ci)i=1..n its com-
ponents with associated state spaces S and (Si)i=1..n. Fur-
thermore, let the timing contributions (tci : Si → T )i=1..n

together with state abstraction functions (ai : S → Si)i=1..n

and combination operator
⊕

: Tn → T be a decomposition
of the system’s timing tc : S → T . We call the decomposition
timing compositional if and only if

∀s ∈ S. tc(s) ≤
n⊕

i=1

tci(ai(s)).

Timing compositionality is not a property of the system
under consideration but of the specific decomposition. It
states that the contribution of individual components to the
overall system’s timing can be considered separately. Which
components can be considered separately depends on the
chosen decomposition.

Besides the aspect of separating the overall system’s tim-
ing into timing contributions of components, Definition 3
comprises a view on the “complexity” of the individual timing
contributions. In case the state abstraction function ai is
the identity function (ai(s) = s), the timing contribution tci



uses whole system states to capture the timing of Ci . It has
the same information need as the timing contribution tc of
the original system C and is thus similarly complex. But the
goal of timing compositionality is to reduce the complexity
of analysing the whole system by employing less complex
component analyses. Therefore, the abstraction functions
capture the information need of the timing contribution func-
tions and thereby of the component analyses. In general,
the smaller the component states ai(s) and the smaller the
overlap between component states ai(s) and aj(s), the better
for the complexity of individual component analyses.

Note that the definition also captures nesting, i.e. that
the definition is again applicable to any constituent com-
ponent Ci (if considered as system itself) and so on. Thus
compositionality can be employed at different levels within a
system.

As already stated, timing compositionality is a property
that always depends on a chosen decomposition. There exist
trivial decompositions (e.g. n = 1, S1 = C and tc1 = tc) such
that compositionality becomes a weak statement. Thus the
significance of timing compositionality strongly relies on the
significance of the decomposition. Whether a decomposition
is significant, depends inherently on the intended application.

So far, timing compositionality (Definition 3) makes a state-
ment solely about the correctness of the combined timings
with respect to the system’s timing. However, there might
exist several different timing compositional decompositions
of one system’s timing into component timing contributions.
For some decompositions, the combination of the timing
contributions might approximate the overall system’s timing
quite closely, while the system’s timing is overestimated by
a lot for other decompositions. Therefore, we now refine our
definition of timing compositionality by introducing a notion
of precision.

Definition 4. Let C be a system and (Ci)i=1..n its com-
ponents with associated state spaces S and (Si)i=1..n. Fur-
thermore, let the timing contributions (tci : Si → T )i=1..n

together with state abstraction functions (ai : S → Si)i=1..n

and combination operator
⊕

: Tn → T be a decomposition
of the system’s timing tc : S → T . We call the decomposition
(µ, α)-timing compositional where µ ∈ R≥1, α ∈ R+

0 if and
only if

∀s ∈ S. tc(s) ≤
n⊕

i=1

tci(ai(s)) ≤ µ · tc(s) + α.

The additional inequality restricts the Definition 3 of tim-
ing compositionality because µ and α are finite constants.
While the original definition is a boolean property, this refined
definition offers several shades of timing compositionality by
introducing the concept of precision. If a decomposition is
(µ, α)-timing compositional, we have an upper bound on the
overestimation of the combined components’ timings com-
pared to the system’s timing. The values µ and α are thus a
measure of how precise the results for a specific decomposi-
tion are at least – the system’s timing is never overestimated
by more than a factor of µ and an additive constant α. For
a given decomposition and timing contribution functions, we
are generally interested in the minimal µ and α such that
compositionality still holds. Furthermore, a decomposition
(together with timing contribution functions) that permits
small constants µ and α is preferable.

Core 1 Core 2 Core 3 Core 4

Shared Memory
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Shared Bus
using e.g. TDMA

Figure 3: Multi-core system with shared resources:
Composability by temporal isolation.

Next, we introduce some specific notions of timing compo-
sitionality based on Definition 4. Consider a (µ, α)-timing
compositional decomposition of a component. We call the
decomposition

• timing compositional with bounded effects if µ = 1, and

• fully timing compositional in case µ = 1 and α = 0.

In case of a fully timing compositional decomposition, the
two inequalities in Definition 4 imply equality,

∀s ∈ S. tc(s) =

n⊕
i=1

tci(ai(s)).

3.3 Compositionality and Composability
Timing compositionality and timing composability are

two orthogonal properties; both with applications in timing
analysis and often mixed up.

Timing compositionality as defined in the previous section
is a property of a decomposition of a given system’s timing
behaviour. It states that the timing behaviour of the system
as a whole can be inferred from the timing contributions of its
constituent components and the type of composition. This
enables a modular view on the system’s timing behaviour as
described by examples in Section 2.

In contrast, timing composability is a property of an indi-
vidual component ’s timing behaviour within a larger system.
It states that the timing behaviour of the component is inde-
pendent of the behaviour of the other components, and can
thus be analysed in isolation.

Timing compositionality of a decomposition does not imply
timing composability of its constituent components, and vice
versa. Next, we present two examples to highlight that
compositionality and composability are orthogonal.

Compositionality. As an example, consider the multi-core
setting in Figure 1 together with the analysis presented in
Section 2.1. The response time of the program running on
core 1 is decomposed into its computation time, the memory
access time and the bus blocking time. Given correct timing
contribution functions, this decomposition is compositional.
However, the calculation of the bus blocking time needs
information about the computation time and the number of
accesses (the other components) – thus it is not composable.

Composability. Consider the multi-core system in Figure 3
with the cores as components. The timing behaviour of
one core, i.e. the worst-case response time of the program
running on the respective core, is composable, if the timing



behaviour is independent of the behaviour (e.g. accesses to
the shared resources) of the other cores. Thus, composability
allows for a separate verification of the timing behaviour of
(the program running on) one core without knowledge about
the behaviour of the other cores.

How to achieve Composability. It is desirable, that the
timing of the program running on one core is not influenced
by other programs running on other cores – the timing is then
composable. However, for current multi-core architectures
this is not true: Interference on the shared bus as well as
possible state changes of the shared memory (e.g. a cache)
influence the timing of programs. One way to achieve compos-
ability is to enforce temporal isolation at the implementation
level as depicted in Figure 3. Several approaches to temporal
isolation have been proposed such as TDMA arbitration of
the shared bus and partitioning of the cache. A survey on
the possible interferences in multicores as well as techniques
to achieve temporal isolation is given in [5]. Akesson et al.
[12] and Goossens et al. [13] provide an overview on how
to achieve temporal isolation in a system-on-chip setting.
Another way to achieve timing composability at the analysis
level is to conservatively account for the possible interfer-
ence by other components. As an example, round-robin
arbitration does not achieve temporal isolation at the im-
plementation level, yet, the latency of bus accesses can be
bounded independently of interfering accesses.

Interplay between Compositionality and Composability.
However, there is an interplay between compositionality and
composability. Consider the two above examples together:
the compositional decomposition of the response time of the
program running on core 1 (Figure 1), and the composable
behaviour of the cores in a multi-core system (Figure 3).
In case the cores operate in a composable fashion, the bus
blocking time only depends on the behaviour of the core
under consideration, not on the behaviour of the other three
cores. Thus, the computation of the bus blocking time can
be (tremendously) simplified.

3.4 Timing Compositional Architectures
Previously, there have been attempts towards defining

a notion of compositionality. In [9], Wilhelm et al. give
definitions for timing compositional architectures based on
the notion of so-called timing anomalies and domino effects.
A timing anomaly describes a situation during analysis where
the locally worst choice (cache miss) does not lead to the
globally worst timing. If the effect of the wrong local choice
cannot be bounded by a constant, the anomalous situation
is called domino effect. A definition of timing anomalies
and domino effects as well as concrete examples can be
found in [14]. Fully timing compositional architectures are
then defined as architectures whose abstract model does not
exhibit timing anomalies (and domino effects). In case there
are timing anomalies but no domino effects, the architecture
is classified as compositional with bounded effects – and
non-compositional otherwise.

Compared to our definition, their notion of timing compo-
sitionality is a property of a model of a system and not of a
behavioural decomposition of a model of a system, which we
consider an important aspect. Our definition of composition-
ality is always meant with respect to a specific, underlying
decomposition of a system’s timing behaviour into component
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Figure 4: Scheduling anomaly [15]: Shorter execu-
tion of instruction A leads to longer overall execu-
tion. Timing compositionality is not necessarily af-
fected by anomalous behaviour within the compo-
nents.

timing contributions. In contrast to the definition of timing
compositional architectures [9], our definition does not forbid
arbitrarily complex timing behaviours within one component.
In particular timing anomalous behaviour is not forbidden
in general. As an example, consider the decomposition of a
processor with out-of-order execution into pipeline and cache
component. The analysis of the pipeline component might
have to take timing anomalies into account due to dynamic
scheduling effects caused by the out-of-order execution – so-
called scheduling anomalies (see Figure 4, [14]). However, the
decomposition pipeline-cache can be timing compositional,
e.g. in case the pipeline stops execution while servicing a
cache miss from main memory. Timing compositionality
is thus unaffected by the anomalous behaviour within one
component.

Furthermore, the abstract model of an architecture is
not uniquely defined. As already stated in Section 3.1 and
Section 3.2, there might exist several decompositions of a
system’s timing; and multiple different timing contribution
functions are possible for each system/component. Similarly,
several different abstract models exist for one architecture —
some of which may exhibit timing anomalies while others do
not. Therefore, relating the above definition to architectures
rather than to specific formal models is problematic.

3.5 Summary
We started by introducing basic concepts such as timing

contributions and the decomposition of a system’s timing
behaviour. Next, we presented our definition of timing com-
positionality, following the intuition given in Section 2. A
decomposition is called timing compositional if and only if
the combination of the timings of individual components is
always an upper bound on the system’s timing. We later
refined this notion to (µ, α)-timing compositionality to incor-
porate a notion of precision.

In the following, we distinguished timing compositionality
from timing composability of a system’s decomposition and
we described their respective applications in timing analysis.

Finally, we discussed a previous definition of timing com-
positional architectures [9]. We sketched the issues that arise
from this definition and we highlighted the differences with
respect to our definition of timing compositionality.



max
si∈Si, s.t.
prog(si)=p

tci(si) ≤ Analysisi(p) Timing
Compositionality

WCET p ≤
⊕n

i=1 Analysisi(p)

System Correctness

Component Correctness

Figure 5: Overall structure of compositional analy-
ses.

4. CHALLENGES AND OPEN PROBLEMS
In the remainder of the paper, we discuss challenges and

open problems in the context of compositionality applied to
execution time analysis.

4.1 Achieving Timing Compositionality
Having timing compositionality formally defined, the chal-

lenge to achieve compositionality remains. We identify the
following two tasks:

1. finding compositional analyses for a given system, e.g.
a complex processor, and

2. designing new (hardware) systems that “support” tim-
ing compositionality.

Analyses. Consider the compositional analysis framework
in Figure 5 that relates analyses and compositionality. Com-
ponent analyses are always based on the timing contribution
functions that describe the timing behaviour of the respec-
tive component. First, these functions have to be derived
– potentially automatically – from a formal system descrip-
tion. Second, analyses have to be designed that soundly
approximate these timing contribution functions.

For existing analyses such as presented in Section 2, the
challenge is to check whether the (compositional) timing
contribution functions for a given platform are correctly
approximated. This might include the computation of sound
penalties, such as the block reload time (BRT), for specific
processor systems. In the ideal case, this computation is
done automatically using a formal model of the processor,
e.g. provided as Verilog/VHDL code.

Another challenge is to design new analyses that make
use of compositionality to precisely and efficiently analyse
complex processor systems. Potential applications of compo-
sitionality include the following scenarios:

• Write-back Caches. In contrast to write-through caches,
a store only modifies a cache line, marks it as dirty
and delays the main memory operation until the dirty
cache line is evicted. Uncertainty as to when the mem-
ory operation happens, renders the integrated, non-
compositional analysis approach infeasible in terms of
complexity. A compositional view enables the use of
cumulative information about the number of performed
write backs – independent of the point in time they
happen. The number of potentially performed write
backs could be approximated efficiently by tracking

the dirty bit of a cache line during a separate cache
analysis.

• Shared Caches in Multicores. The execution of a pro-
gram p using a shared cache experiences interference:
Co-running programs might evict cache lines that were
still useful for p. If at all, bounding the amount of
interference in a cumulative way rather than locally
classifying memory accesses as hit/miss seems more
likely feasible in terms of precision and efficiency.

Hardware Design. Finding a suitable timing compositional
decomposition can, in general, be difficult. Designing hard-
ware that “supports” timing compositionality, i.e. that allows
for a compositional decomposition by construction, might be
a solution. The challenge is to find hardware designs that sup-
port compositionality with low or even without performance
degradation.

Whether a decomposition is compositional depends on
how components are connected and how they interact with
each other. As seen in Section 3.4, the behaviour within one
component is not a concern as long as it does not influence
the interaction with other components. Therefore, hardware
design that supports compositionality has to focus on how
hardware components are connected and interact.

4.2 Compositional versus Non-Compositional
Analyses

There is a trade-off concerning when to use compositional
or non-compositional analyses. Tightly-coupled systems (e.g.
out-of-order pipeline with several functional units acting in
parallel) favour non-compositional analyses in order to pre-
cisely capture timing effects at a fine-grained level. However,
with increasing complexity of the systems (e.g. multi-core pro-
cessors), the non-compositional approach becomes infeasible
in terms of computational effort and memory consumption.

In such situations, compositional analyses are inevitable
due to efficiency. But compositional analyses can also be
profitable in terms of precision, e.g. when only cumulative
information is precise (for write-back caches or shared caches
in multicores). Therefore, it is worth to investigate the
gain/loss in precision/efficiency when compositional methods
are employed, e.g. in the scenarios mentioned above.

5. RELATED WORK
In Section 2, we described approaches that use timing

compositionality in order to decouple analyses of different
parts of a system. The topics include the analysis of

• the bus blocking time in resource-sharing systems [6]
[7],

• the cache-related preemption delay in preemptively
scheduled systems [10] [8], and

• the refreshes in a DRAM system [11].

In [16], Schliecker et al. present their approach to per-
formance analysis of real-time multiprocessor systems with
resource sharing. They assume timing compositionality “in
the sense that any shared resource delays are additive to the
execution times”. Such additive behaviour may be achieved
by the processor stalling execution on accesses to shared
resources.



Wilhelm et al. [9] introduce the notion of timing composi-
tional architecture. We discussed problems and limitations
of this definition in detail in Section 3.4.

In [17], Liu et al. present a precision timed (PRET) archi-
tecture for timing predictability and timing composability.
The timing composability enables a modular verification of
systems with concurrent programs. The microarchitectural
design includes a thread-interleaved pipeline, scratchpad
memories, and a specialised, predictable DRAM controller.
The design also allows for compositional decompositions
e.g. of a thread’s execution time into computation time
and memory access time. On memory access, the thread
continues execution only after the memory access has com-
pleted, thereby clearly separating computation and memory
access time of the thread. Furthermore, their predictable
DRAM controller allows for precise bounds on the latency
of a memory access independently of the execution context.

Goossens et al. [13] as well as Akesson et al. [12] give
an overview on how to achieve timing composability in a
system-on-chip setting. In [13], the authors survey their
previous work on the CompSOC architecture that provides
temporal isolation between applications by, e.g., employ-
ing time-division multiplexing (TDM) techniques. Besides
techniques to achieve composability, the authors of [12] ad-
ditionally discuss that composability and predictability (i.e.
the ability to determine precise performance bounds) are
orthogonal properties. This discussion partially resembles
our discussion in Section 3.3.

The increasing complexity in real-time software makes com-
posable and compositional methods necessary to efficiently
reason about its timing [18]. Puschner et al. introduce com-
posability of execution times and I/O-compositionality of
worst-case execution times (WCETs) and discuss ways to
achieve these properties. The timing of a task executed on a
processor must not be affected by co-running tasks (compos-
ability). The WCET of sequentially executed tasks should be
the sum of the WCETs of each task (I/O-compositionality).
These notions are more restrictive than the definitions we
give in this paper.

In [19], Lee et al. tackle the scalability problems of multi-
processor simulation for performance estimation. They pro-
pose the so-called composable performance regression that
splits multiprocessor simulation as follows. First, a unipro-
cessor model estimates the baseline performance assuming no
interference from other cores. Second, a contention model is
used to capture the interference effects (e.g. due to memory
accesses) caused by co-running cores. Third, a penalty model
combines the result of the two previous models to estimate
the multiprocessor performance. The models are obtained
by using regressions on a set of training data.

6. CONCLUSIONS AND FUTURE WORK
With the increasing complexity of processors, state-of-the-

art approaches to execution time analysis become more and
more problematic in terms of computational effort and mem-
ory consumption. This trend makes it necessary to move from
these non-compositional approaches towards compositional
methods as done e.g. in [6] for resource-sharing systems or [8]
for preemptively scheduled systems. This paper contributes
a formal definition of timing compositionality that is based
on the previous, intuitive understandings. The definition
may serve as a foundation for correctness proofs of composi-
tional analyses. We have discussed the definition in detail

and contrasted it with the definition of timing compositional
architectures [9]. Furthermore, we have presented challenges
and open problems in the context of compositional execution
time analysis, which we consider future work.
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